Sand filters are used as a step in the water treatment process of water purification.
There are three main types; rapid (gravity) sand filters, upward flow sand filters and slow sand filters. All three methods are used extensively in the water industry throughout the world. The first two require the use of flocculant chemicals to work effectively while slow sand filters can produce very high quality water with removal from 90% to >99% (depending on the strains), taste and odour without the need for chemical aids. Sand filters can, apart from being used in water treatment plants, be used for water purification in singular households as they use materials which are available for most people.
In addition, there are passive and active devices for causing solid-liquid separation such as , self-cleaning screen filters, and .
There are several kinds of depth filters, some employing fibrous material and others employing granular materials. Sand bed filters are an example of a granular loose media depth filter. They are usually used to separate small amounts (<10 parts per million or <10 g per cubic metre) of fine solids (<100 micrometres) from aqueous solutions.Coulson, J. M.; Richardson, J. F.; Backhurst, J. R., Harker, J. H. (1991). Chemical Engineering. Vol.2, 4th ed. . In addition, they are usually used to purify the fluid rather than capture the solids as a valuable material. Therefore they find most of their uses in liquid effluent (wastewater) treatment.
In addition, particulate solids can be prevented from being captured by surface charge repulsion if the surface charge of the sand is of the same sign (positive or negative) as that of the particulate solid. Furthermore, it is possible to dislodge captured particulates although they may be re-captured at a greater depth within the bed. Finally, a sand grain that is already contaminated with particulate solids may become more attractive or repel addition particulate solids. This can occur if by adhering to the sand grain the particulate loses surface charge and becomes attractive to additional particulates or the opposite and surface charge is retained repelling further particulates from the sand grain.
In some applications it is necessary to pre-treat the effluent flowing into a sand bed to ensure that the particulate solids can be captured. This can be achieved by one of several methods:
Overall, there are several categories of sand bed filter:
The sketch illustrates the general structure of a rapid pressure sand filter. The filter sand takes up most space of the chamber. It sits either on a nozzle floor or on top of a drainage system which allows the filtered water to exit. The pre-treated raw water enters the filter chamber on the top, flows through the filter medium and the effluent drains through the drainage system in the lower part. Large process plants have also a system implemented to evenly distribute the raw water to the filter. In addition, a distribution system controlling the air flow is usually included. It allows a constant air and water distribution and prevents too high water flows in specific areas. A typical grain distribution exits due to the frequent backwashing. Grains with smaller diameter are dominant in the upper part of the sand layer while coarse grain dominates in the lower parts.
Two processes influencing the functionality of a filter are ripening and regeneration.
At the beginning of a new filter run, the filter efficiency increases simultaneously with the number of captured particles in the medium. This process is called filter ripening. During filter ripening the effluent might not meet quality criteria and must be reinjected at previous steps in the plant.
The depth of the sand bed is recommended to be around 0.6–1.8 m (2–6 ft) regardless of the application. This is linked to the maximum throughput discussed below.
Guidance on the design of rapid sand bed filters suggests that they should be operated with a maximum flow rate of 9 m3/m2/hr (220 US gal/ft2/hr).K. J. Ives (1990). "Deep Bed Filtration". Chap. 11 of Solid-Liquid Separation, 3rd ed., L. Svarovsky (ed). Butterworths. Using the required throughput and the maximum flow rate, the required area of the bed can be calculated.
The final key design point is to be sure that the fluid is properly distributed across the bed and that there are no preferred fluid paths where the sand may be washed away and the filter be compromised.
Rapid pressure sand bed filters are typically operated with a feed pressure of 2 to 5 bar(a) (28 to 70 psi(a)). The pressure drop across a clean sand bed is usually very low. It builds as particulate solids are captured on the bed. Particulate solids are not captured uniformly with depth, more are captured higher up with bed with the concentration gradient decaying exponentially.
This filter type will capture particles down to very small sizes, and does not have a true cut off size below which particles will always pass. The shape of the filter particle size-efficiency curve is a U-shape with high rates of particle capture for the smallest and largest particles with a dip in between for mid-sized particles.
The build-up of particulate solids causes an increase in the pressure lost across the bed for a given flow rate. For a gravity fed bed when the pressure available is constant, the flow rate will fall. When the pressure loss or flow is unacceptable and the filter is not working effectively any longer, the bed is remove the accumulated particles. For a pressurized rapid sand bed filter this occurs when the pressure drop is around 0.5 bar. The backwash fluid is pumped backwards through the bed until it is fluidized and has expanded by up to about 30% (the sand grains start to mix and as they rub together they drive off the particulate solids). The smaller particulate solids are washed away with the backwash fluid and captured usually in a settling tank. The fluid flow required to fluidize the bed is typically 3 to 10 m3/m2/hr but not run for long (a few minutes). Small amounts of sand can be lost in the backwashing process and the bed may need to be topped up periodically.
0.08–0.25 | ||
0.15–0.30 | ||
0.9–1.5 | ||
1–6 months | ||
Several days | ||
Scraping | ||
Maximum raw-water turbidity | Unlimited with proper pretreatment | 10 NTU |
These materials can be used alone or in combination. In multimedia filters, the media layers are always arranged by density: heavier materials like garnet and ilmenite settle at the bottom, while lighter ones like anthracite are placed on top. This configuration creates varying porosity throughout the filter bed, resulting in more effective filtration and different levels of pressure drop.
A typical multimedia filter setup includes anthracite on top, followed by sand, and then garnet at the bottom, all supported by a gravel base. The depth for such filters ranges from 0.6 to 1 meter each layer. Depths above 1 meter significantly increase pressure drop, while shallower beds compromise layer thickness and reduce efficiency.
When the pressure drop exceeds 10 psi, a backwash operation is necessary. During backwashing, water flow is reversed (upward) to lift the filter media and remove accumulated particles, which are then discharged with the backwash water. Common for the backwash is around 3 times the normal filtering flux (must be high enough to lift the filtering media to remove the particles trapped in it).
Filters classification:
Mixed bed filters parameters:
0.6-1.0 |
3-7 |
3-7 |
Pressure drop exceeds 10 psi |
Passing flocculation water through a rapid gravity sand filter strains out the flocculation and the particles trapped within it, reducing numbers of bacteria and removing most of the solids. The medium of the filter is sand of varying grades. Where taste and odor may be a problem (organoleptic impacts), the sand filter may include a layer of activated carbon to remove such taste and odor.
Sand filters become clogged with floc or bioclogging after a period in use. Slow sand filters are then scraped (see above) while rapid sand filters are backwashed or pressure washed to remove the floc. This backwash water is run into settling tanks so that the floc can settle out and it is then disposed of as waste material. The supernatant water is then run back into the treatment process or disposed of as a waste-water stream. In some countries, the sludge may be used as a soil conditioner. Inadequate filter maintenance has been the cause of occasional drinking water contamination.
Sand filters are occasionally used in the sewage treatment as a final polishing stage. In these filters the sand traps residual suspended material and bacteria and provides a physical matrix for bacterial decomposition of nitrogenous material, including ammonia and , into nitrogen gas.
Sand filters are one of the most useful treatment processes as the filtering process (especially with slow sand filtration) combines within itself many of the purification functions.
The main limitations of this technology would be related to the clogging, that is, the obstruction of the filter media, which requires a significant amount of water to carry out the backflush operation and the use of chemicals in the pretreatment. Furthermore, slow sand filters usually require larger land areas compared to the rapid flow, especially if the raw water is highly contaminated. However, despite these limitations, they offer much more capabilities and that is why they are extensively used in the industry.
Considerable uncertainty is involved regarding models used to construct sand filters. This is due to mathematical assumptions that have to be made such as all grains being spherical. The spherical shape affects the interpretation of the size since the diameter is different for spherical and non-spherical grains. The packing of the grains within the bed is also dependent on the shape of the grains. This then affects the porosity and hydraulic flow.
Sectors where sand filtration is implemented include drinking water production, swimming pools, car washes, groundwater treatment, RWZI, slaughterhouses, fruit and vegetable processing industry, drinks, food industry, surface treatment of metals, …
Cooling water production, drinking water preparation, pre-filtration in active carbon treatments and membrane systems, and the filtration of swimming pool water.
|
|